Томский политехнический университет
студент
Нгуен Мань Хиеу, аспирант кафедры ОХТ. Научный руководитель: профессор, д.т.н. В. В. Коробочкин Национальный исследовательский Томский политехнический университет, г. Томск, Россия
УДК 66.05
Рис – один из наиболее ценных пищевых продуктов в мире, он занимает первое место по валовым сборам, и второе место по площади посевов после пшеницы. Наиболее привычным продуктом остается шлифованный белый рис. Вместе с тем возрастает потребление риса-полуфабриката, который получают либо путем обработки риса паром под давлением, что способствует сохранению в нем значительного количества витаминов и минеральных веществ, либо рис предварительно слегка отваривают, а затем обезвоживают, чтобы свести к минимуму время его приготовления.
В процессе переработки рисового зерна в крупу в качестве отходов получают немалое количество рисовой шелухи, а также некоторое количество отрубей. Рисовая шелуха – это внешняя оболочка ядра риса, которая защищает внутренние компоненты от внешних атак насекомых и бактерий. Для выполнения этой функции и одновременного пропускания необходимого для роста зерна воздуха и влаги, рис в процессе естественной эволюции создал в своей шелухе уникальные нанопористые слои кремнезема. Масса шелухи достигает 20% веса необрушенного зерна риса (табл. 1). Она играет исключительно важную роль в жизни растения риса, защищая его от повреждений. Однако после обмолота и обрушения рисовых зерен шелуха становится как бы ненужной и ее чаще всего, просто сжигают в печах. Вместе с тем, рисовая шелуха отличается широким диапазоном полезных для человека свойств, и этот ее потенциал пока недостаточно используется человеком, как в сельском хозяйстве, так и других отраслях экономики [3, с. 325].
Таблица 1.
Химическое содержание рисовой шелухи
Рисовая шелуха |
Содержание, % масс |
Влага |
8,47 - 11 |
Зола |
15,68 - 18,59 |
Сырой белок |
2,94 - 3,62 |
Экстракт, растворимый в эфире |
0,82 - 1,2 |
Сырое волокно |
39,05 - 42,9 |
SiO2 |
18,17 |
Ежегодно в мире образуется порядка 200 млн тонн рисовой шелухи, которая из-за наличия диоксида кремния не подвергается гниению. Требуются огромные площади земельных угодий для ее захоронения. Утилизация отхода рисового производства представляет собой важную техническую задачу. В связи с этим утилизация рисовой шелухи стала, жизненно важной задачей для всех стран мира, которые занимаются возделыванием и переработкой риса и число которых превышает 100 (основные производители: Китай (33% мирового урожая) и Индия (25% мирового урожая)); крупные производители: США, Пакистан, Южная Корея, Египет, Камбоджа, страны Африки и Южной Америки; в странах бывшего СССР основными производителями являются Россия, Узбекистан, Казахстан [4, с. 310].
В настоящее время существует несколько способов утилизации и переработки рисовой шелухи. Это либо создание специальных отвалов, либо добавление рисовой лузги в строительные материалы в качестве дополнительных присадок, либо сжигание или использование рисовой шелухи в производстве топливных брикетов, в шинной и в цементной промышленности и др. Недостатком этих способов является низкая экономическая эффективность, так как в производстве топливных элементов не утилизируют значительное количество диоксида кремня, который входит в составе риса а наоборот, в шинной и цементной промышленности используют в основном только кремнёвую часть шелухи, поэтому поиск новой пути переработки рисовой шелухи, которая позволяет одновременно утилизировать и кремнёвую и углеводородную часть рисовой шелухи является важной задачей.
Предполагается новый метод переработки рисовой шелухи, который позволяет получить и активированный уголь, и диоксид кремния. Сущность метода заключается в следующем. Исходную рисовую шелуху подвергают кислотному травлению, промывают водой, сушат, предварительно сжигают в закрытом реакторе с отсосом дыма и улавливанием аморфного углерода. Процесс окислительного сжигания рисовой шелухи ведут в оптимальном режиме и размоле шелухи с контролем кислорода. После сжигания полученную золу подвергают обработке концентрированной щелочей (NaOH 6M). Дисперсный углерод осаждается в воде и извлекается из нее с помощью центрифугирования или отстоя. Полученный уголь сушат и подвергают активации в регулируемом реакторе водяным паром. Остальная жидкость – жидкое стекло после фильтрования подвергают переработке кислотой, после сушки получают диоксид кремня. Для определения сорбционной ёмкости и качества полученного угля, использовали метод йодного числа.
Технологическая схема процесса иллюстрируется на рисунке 1.
Рис. 1. Технологическая схема процесса переработки рисовой шелухи с получением активного угля и диоксида кремния
Температура сжигания шелухи является важным фактором, виляющим на скорость карбонизации и качество полученного активного угля. В данной работе был исследован процесс термического разложения рисовой шелухи, чтобы определить оптимальный температурный режим сжигания. В качестве исследуемых образцов использовали шелухи, взятые от равнины Красной реке Вьетнама. Эксперимент приведен в котле с регулировкой температур.
Ниже приведена кривая ТГА рисовой шелухи.
Рис. 2. Термогравиметрический анализ рисовой шелухи
Из рисунка видно что, при температуре ниже 150оС происходит процесс испарения воды в шелухе, при температуре 250-350оС резко происходит процесс разложения лабильных органических веществ, и большинство органических веществ разложено в этом интервале. При дальнейшем увеличением температуры до 600оС происходит разложение остальных органических соединении.
Чтобы определить количество угля в полученной золе использовали метод абсолютного сжигания, т.е. несколько граммов золы сжигали на длительное время и снижение массы показывает количество угля в золе, результаты анализа показали, что в золе уголь занимает 54-56 % и сумма диоксида кремня и других оксидов занимает 44-46 %.
При температуре сжигания выше 850о С шелуха была перегрета и поверхность золы имеет белый цвет, что говорит о наличии диоксида кремня, отлипавший после сжигания. Вместе с этим, пористость полученного угля сузилась, поэтому его активность уменьшилась. Структура золы после сжигании при температуре 850о С показана на рисунке 3.
Рис. 3. Структура золы после сжигания при температуре 850о С
а - поверхность золы огрубела из- за перегрева; б- головка диоксида кремня отлипала; в- пористость полученного угля сузилась
В результате исследований можно сделать вывод о том что, из рисовой шелухи можно получить и активированный уголь, и диоксид кремня. Режим сжигания играет важную роль в производстве активированного угля из рисовой шелухи, чтобы получить активированного угля с хорошей активностью температура сжигания должна меньшее 850о С.
Все сказанное выше свидетельствует о перспективности технологий, обеспечивающих комплексное использование отходов производства риса, по направлению получения активированного угля и диоксида кремния. Предварительные оценки показывают, что стоимость химических продуктов, которые получены из тонны упомянутых выше отходов (активированный уголь, аморфный диоксид кремния высокой чистоты, жидкое стекло) превышают цену тонны зерна риса в несколько раз.
Рецензии:
23.09.2014, 6:33 Хасанов Шодлик Бекпулатович
Рецензия: Статья посвящена актуальной теме. Предлагаемая технологическая схема получения активированного угля и диоксида кремния отличаются простотой и дешевизной, что является плюсом данной работы. Хотелось бы отметить, что в статье имеются некоторые орфографические и грамматические ошибки, и их следует исправить до включения статьи в журнал. После исправления указанных замечаний статью можно рекомендовать к публикации.