кандидат физ.-мат. наук, доцент
ГБПОУ МО "Химкинский техникум"
Начальник штаба ГО и ЧС, бывший главный (ведущий) научный сотрудник АГЗ МЧС России и ФГУ ВНИИ ГОЧС (ФЦ ) МЧС России, преподаватель дисциплины БЖД в ВТУ им. Щепкина и ГИТИС
УДК 511.1[34;512.54
Введение
Аддитивность (лат. additivus — «прибавляемый») – в обычном понятии – это свойство математических или физических величин, когда их значение, отнесённое к целому объекту эквивалентно сумме значений величин, соответствующих его частям без остатка [1]. Вопрос к читателю. Отгадайте, сколько раз в УДК-системе встречается термин «мультипликатьивность»?
При решении задач в физике и математике приходится встречаться c многовековой конкуренцией аддитивности и мультипликативности [1].
В физике это связано с тем, что нельзя суммировать физические величины, имеющие не одинаковые размерности (например, кг + м), а умножать можно (например, кг на м). К тому же, аддитивность физических величин – довольно редкое свойство и часто зависит от уровня задачи относительно соответствующего закона сохранения. Так, например, не только скорость или температура, но и расстояние, масса и даже время в каких-то задачах могут не обладать аддитивностью, когда говорят «средняя температура по больнице». Хочется заметить, что даже энергия может попасть в область не аддитивности, например, в задачах на вращение, столкновение элементарных частиц, где действует не закон сохранения энергии, а закон сохранения момента импульса [2]. Эту проблему «взаимоотношений» и взаимопревращений сумм и произведений функций и их аргументов можно выразить в принципе:
G (x)·G (y) ↔ F (x ± y). (1)
G (x·y) ↔ F (x ± y) (2)
или
G (x)·G (y) ↔ F (x) ± F (y), (3)
если G и F приняты как некие обобщённые операторы, включающие в себя операнды, и являющиеся субъектами элементарных операций.
Например, случаю F≡G по типу (1) удовлетворяют степенные и показательные функции:
аx·аy = аx+y, (4)
xa · xb = xa+b. (5)
Для тригонометрических функций задачами типа (1), (2) и (3) являются формулы приведения (в которых могут слева и справа стоять не две, а три функции), для дифференцирования и интегрирования – соответствующие формулы для сумм и произведений функций и их аргументов [1].
Постановка задачи
В общем виде этот вид математической проблематики представляется как взаимосвязь оператора ∏ с оператором ∑ функций и их аргументов.
Например, для случая трёх аргументов –
f(abc)=f(a)+ f(b) +f(c)
существует лишь одна конечно заданная группа с числами {1,2,3}:
1·2·3=1+2+3.
Вряд ли этот прецедент может служить основанием для формулировки теоремы из-за своей тривиальности.
Случай двух аргументов в рамках множества {Q}
Идеалом этой задачи-операции является вариант, когда операторы F≡G≡E, где E – единичный оператор в групповой семантике, из (1 – 3), и тогда аддитивная функциональная группа
f(ab) = f(a) + f(b) (6)
превращается в эквивалент
А·В = А + В. (7)
Следует отметить, что утверждение (7) действительно для {А,В € N}, так как считается, что он реализуется в случае А = В = 2. Вопрос: можно ли вставить в это утверждение слово «только»?
Для {А,В € Q} (множество рациональных, точнее, дробно-рациональных чисел) существует общий вид функции, для которых выполняется соотношение (7). Такая задача может быть поставлена в рамках физической тематики.
Пусть мы имеем численное представление какого-то физического объекта в виде формальной суммы (n + m). Измерением количественной характеристики этого объекта назовём деление этого целого числа из Z на каждое из них – иначе, такое в групповой семантике деление носит название модульной операции. Именно сумма и произведение результатов этой операции равны между собой. Более того, для разности числовых объектов также выполняется соотношение (7).
Пусть,
А = (n ± m)/n, B = (n ± m)/m,
тогда
А·В = (n ± m)2/n·m; А + В = (n ± m)2/n·m (8)
В таблице представлены все числовые значения, рассчитанные по формуле (8) для {n,m € Z} в диапазоне n = {1…10}, m = {1…7} и {А,В € Q}. Подчёркнуты отрицательные числа, курсивом выделены значения с квадратами чисел в числителе и знаменателе. Диагональные элементы данной таблицы-матрицы соответствуют А = В = 2 в выражении (8).
Таблица. Результаты расчётов по формулам (7), (8).
nm |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
|||||||
+ |
– |
+ |
– |
+ |
– |
+ |
– |
+ |
– |
+ |
– |
+ |
– |
|
1 |
4 |
0 |
9/2 |
1/2 |
16/3 |
4/3 |
25/4 |
9/4 |
36/5 |
16/5 |
49/6 |
25/6 |
64/7 |
36/7 |
2 |
9/2 |
1/2 |
4 |
0 |
25/6 |
1/6 |
36/8 |
4/8 |
49/10 |
9/10 |
64/12 |
16/12 |
81/14 |
25/14 |
3 |
16/3 |
4/3 |
25/6 |
1/6 |
4 |
0 |
49/12 |
1/12 |
64/15 |
4/15 |
81/18 |
9/18 |
100/21 |
16/21 |
4 |
25/4 |
9/4 |
36/8 |
4/8 |
49/12 |
1/12 |
4 |
0 |
81/20 |
1/20 |
100/24 |
4/24 |
121/28 |
9/28 |
5 |
36/5 |
16/5 |
49/10 |
9/10 |
64/15 |
4/15 |
81/20 |
1/20 |
4 |
0 |
121/30 |
1/30 |
144/35 |
4/35 |
6 |
49/6 |
25/6 |
64/12 |
16/12 |
81/18 |
9/18 |
100/24 |
4/24 |
121/30 |
1/30 |
4 |
0 |
169/42 |
1/42 |
7 |
64/7 |
36/7 |
81/14 |
25/14 |
100/21 |
16/21 |
121/28 |
9/28 |
144/35 |
4/35 |
169/42 |
1/42 |
4 |
0 |
8 |
81/8 |
49/8 |
100/16 |
36/16 |
121/24 |
25/24 |
144/32 |
16/32 |
169/40 |
9/40 |
196/48 |
4/48 |
225/55 |
9/56 |
9 |
100/9 |
64/9 |
121/20 |
49/18 |
144/27 |
36/27 |
169/36 |
25/36 |
196/45 |
16/45 |
225/54 |
9/54 |
256/62 |
16/63 |
10 |
121/10 |
81/10 |
144/22 |
64/20 |
169/30 |
49/30 |
196/40 |
36/40 |
225/50 |
25/50 |
256/60 |
16/58 |
289/69 |
25/70 |
Заметим, что выражение (8) имеет форму асимптотической функции с вертикальной асимптотой, что может стать вместе с данными таблицы интересными объектами для студентов (а, может, и не только), интересующихся теорией чисел и теорией арифметики вообще [3]. Между прочим, эта форма применима и для любых функций и других математических объектов, которые можно представить в виде бинома: F(xi) = f1(xi) + f2(xi); A = 1 ± f1(xi)/f2(xi), B = 1 ± f2(xi)/f1(xi), и в результате – то же выражение (8).
Заключение
Посредством небольшой арифметической манипуляции для получения аддитивно-мультипликативной эквивалентности в формуле А·В = А+В, для которой на множестве N существует только одна тривиальная реализация при n=2 – {2·2 =2+2} и одна – для n=3 {1·2·3=1+2+3}, получено обобщение, действительное на множестве Q при заданных ограничениях для А, В:. Да, а термин «мультипликативность в УДК-перечне не встречается ни разу.
Рецензии:
5.01.2021, 13:32 Усов Геннадий Григорьевич
Рецензия: Учитывая сообщение Эдуарда Григорьевича от 05.01.2021, предлагаю считать данную статью достойной публикации в Первом номере журнала Третьего десятилетия Третьего тысячелетия.
1.01.2021, 0:37 Ситнев Николай Владимирович Отзыв: Прочитал статью и подумал, как всё совпало. Не актуально, не интересно и не имеет существенной научной новизны. Если автор считает эту тему актуальной, то почему такой обязательный раздел (и кстати другие тоже) он опустил. Ему бы, как автору многочисленных строгих и поучающих рецензий, не знать простые и понятные правила оформления статьи? |
1.01.2021, 4:38 Голубев Владимир Константинович Отзыв: Эдуард Григорьевич, подошел к задаче А*В=А+В не с позиции теоретической арифметики, а с позиции элементарной алгебры. Вот мой подход. Пусть есть два числа х и у, для которых выполняется условие х*у=х+у. Решаем это уравнение при условии того, что у=а*х. Приходим к а*х^2=(а+1)*х. Отбрасываем тривиальное решение х=0, у=0 и получаем х=(а+1)/а, у=а+1 в области рациональных чисел. Натуральное х возможно только для а=1, то есть х=2, у=2. Вот где-то так, если навскидку. |
5.01.2021, 12:24 Мирмович Эдуард Григорьевич Отзыв: Со всеми отзывами моих коллег по "цеху" согласен. Это небольшое математическое развлечение новогоднего характера мной редактировалось и урезалось десятки раз, пока не приобрело такую кратенькую форму. Сама задачка родилась у меня, когда я моделировал ионограммы вертикального зондирования ионосферы на прекрасном языке "Фокал", асимптотический вид которых совпадал с графиками этих выражений. Замечание Николая Владимировича также справедливо. А мои рецензии чаще всего критикуют орфографию и синтаксис и претенциозные названия статей, решающих какую-то частную задачу. Но право: дать место в нашем журнале этой незатейливой математической полушутке принадлежит вам, и я не стану оспаривать любое решение. Просто в мой 80-летний юбилейный год не оказалось ни времени, ни ресурсов представить к публикации ни одной статьи - вот я и вспомнил этот "казус", хотя сама проблема аддитивно-мультипликативной "толерантности" и эквивалентности является чуть ли не основной в математике и особенно в физике. Спасибо за прочтение и затраты времени! С третьим 10-летием 21-го века всех! |
5.01.2021, 13:48 Усов Геннадий Григорьевич Отзыв: В продолжение отзыва Ремизова Вадима Григорьевича предлагаю добавить в статью следующее: можно составить равенство суммы и произведения любого количества чисел, если к этим числам добавить в виде суммы единиц в количестве, равном разности суммы и произведения первоначального количества чисел (продолжение незатейливой математической полушутки). |
5.01.2021, 17:16 Мирмович Эдуард Григорьевич Отзыв: Владимир Константинович, именно так и получалось это соотношение. Но ещё раз повторюсь. Одной из самых трудных и основных задач в теории групп и представлений является поиск неприводимых представлений, для которых воздействие какого-то оператора с любыми допускающими операндами является гомеоморфизмом, полным обращением в себя. Любому объекту можно сопоставить, привязать к нему какое-то число, характеризующего его количественно. Измерение - это деление на выбранный нормировочный множитель, размерную единицу измерения и пр. Получив количественную оценку этого объекта делением представляющего его числа на одно из слагаемых и на другое, мы получаем максимально объективную оценку объекта (да, и процесса, математической связки какой-то). Вы приобретаете поле с урожаем, гарнитур в виде стола и стула и др. Как оценить для себя ценность объекта. Я делю (по весу, объёму, стоимости и пр.) стол на стул, площадь участка на урожай... получаю стол равен трём стульям, эффективность гектара... А стул как оценить? Делю стул на стол - он представляет 1/5, 1/4... стола, делю урожай на площадь Вот у меня и полная ясность вне навязанных мне единиц измерения, что чего стоит в объективных, независимых единицах измерения. А то, что эти оценки эквивалентны оказались по аддитивно-мультипликативности - это дополнительный "бонус". Из физики эта задачка родилась и из математики, которая должна уважать размерность. Ну, скажите, приобретёте ли Вы угодья площадью в несколько га, когда ам скажут, что с этой площади снят такой-то урожай? Вы же в уме сразу поделите и площадь на урожай, и окажется, что на каждую тонну кукуруза или пшеницы затрачивается площадь в три раза большая, чем оптимальная продуктивность гектара. Геннадий Григорьевич, уважаемый мой тёзка по отцу! Наверное, Вы всё же не увидели, что в данной как и в каждой шутке есть доля правды. Вы, конечно, понимаете, что ни 1*1*1*1*2*6=1+1+1+1+2+6=12, ни 1*1*1*1*1*1*1*1*1*3*6=1+1+1+1+1+1+1+1+1+3+6=18 или другие манипуляции с произведением единиц тут не к месту. Кстати, получаемая квадратичная форма имеет место в шаровых функциях, а, может, ещё где. Речь идёт о функциях, важности аддитивно-мультипликативной проблематики, о чём как-то по умолчанию или по иной причине почти не говорится (о в УДК-классификации даже слова "мультипликативность" нет), а иллюстрация с тривиальными операторами F≡G, т.е. для арифметических чисел, как написано в статье, это иллюстративный пример. А честно, я не сумел ни формулы, ни рисунки в .jpg-формате вставить. И ещё раз: со всеми критическими замечаниями я согласен, но ничего переделывать не стану. Нет - так - нет. Но, считаю, что в своём ответе хоть немного просветил тех, кто это доброжелательно воспримет. С уважением к коллегам! |
5.01.2021, 18:54 Усов Геннадий Григорьевич Отзыв: Уважаемый Эдуард Григорьевич! В ответе Вы говорите, что не хотите, чтобы было много чисел в эквиваленте. Однако в Вашей статье идет упоминание о: "Случай двух аргументов...", " при n=2...", "для n=3...". Следовательно, Вы допускаете, что возможно большее количество аргументов, и n= может быть больше 3. То есть, в статье необходимо: либо ограничить количество аргументов "физически", либо что-то сказать о большем количестве аргументов. |
6.01.2021, 4:41 Мирмович Эдуард Григорьевич Отзыв: Давайте закончим эту "перестрелку". Я сказал, что "манипуляции с произведением единиц" переводят эту небольшую иллюстрацию в полное посмешище. Возможно, я случай n=3 с группой элементов 1,2,3 привёл для "лирического отступления" или "красного словца", бог с ним. А произведением единиц можно любую сумму "уравнять" по числу слагаемых и сомножителей, я и сказал об этом. Я не мог говорить о желании ограничить число аргументов, т.к. не существует даже в такой постановке для n>2 таких эквивалентов, если исключить подгонку произведением единиц. Не тратьте ни своё, ни моё время. Дадите + хорошо, не дадите - я не рассерчаю на это. А актуальность и элемент научности во введении отмечены, да и в ответе что-то по этому поводу сказал. От нашей переписки существование проблемы соотношения f(x*y) и f(x) + f(y) или f(x)*f(y) и f(x) + f (y) и в более общем виде: не f и f, а f и g, например, где n>2 может быть, не исчезает. Спасибо Вам за внимание к деталям задачки, не очень заслуживающей такой дискуссии. |
6.01.2021, 17:17 Мирмович Эдуард Григорьевич Отзыв: Уважаемый Вадим Григорьевич! Безусловно, диофантовы уравнения - это самые "честные" инструменты представления и моделирования физических процессов. Если идти дальше, то "Бог дал нам лишь целые числа, остальное - дело рук (не всегда разумных и обоснованных, ред.) человеческих" (Л. Кронекер). И в этом формате из 4 стандартных способов решения ДУ, три могут представлять интерес для реализации Вашего предложения. Я их очень люблю и согласен с Вами. Но я всё рассказал про эту неказистую задачку, которую вспомнил из 60-х годов и попытался дать ей физическую интерпретацию. И первым делом её хотел усложнить и обобщить через ДУ, повозился больше месяца, но оказалось, что попал в боевую операцию "из пушки по воробьям". Пусть уж, если Вы не возражаете, для будущих ссылок, если продолжу эту тему, повисит в нашем журнале, который я очень уважаю. Уважаемый мной другой Григорьевич! И во введении, и в постановке задачки, и в ответе я упомянул, что если операторы слева и права не тождественны, как для числовой реализации, то, конечно, должны существовать и существуют соотношения, когда с одной стороны какие-то функции от произведения n>2 аргументов эквивалентны сумме каких-то ДРУГИХ функций с операторами, не тождественными "левым". Поэтому другой наш Григорьевич совершенно обоснованно и заговорил о ДУ. Ребята, дайте мне закончить отчётность в ГАСУ по гражданской обороне, украшенной задачами COVID(19-21); отослать тезисы на конференцию в Институт космических исследований, где меня вспомнили, хоть я давно в системе АН СССР-РАН не служу, апредал её в пользу МЧС; дописать статью моей заочной аспирантке, одну из которых я ей выложил здесь, в нашем журнале, который я альтруистически люблю, и получил за это от кого-то из вас оплеуху; провернуть стирку, т.к. я живу один и т.д. Я вас всех люблю и рад сотрудничеству на этой площадке. Всем спасибо! |
11.01.2021, 21:19 Лобанов Игорь Евгеньевич Отзыв: В целях большей наглядности результаты расчётов, приведённых в "Таблица. Результаты расчётов по формулам (7), (8)", рекомендую представить в виде графического представления (графики, поверхности), тогда будет гораздо понятнее читателю понять смысл статьи, т.к. расчёты будут видны в цельном виде, т.е. как бы "со стороны": будет видна вышеупомянутая асимптотичность и т.п. |
12.01.2021, 12:39 Мирмович Эдуард Григорьевич Отзыв: Спасибо! |
24.01.2021, 15:53 Мирмович Эдуард Григорьевич Отзыв: Уважаемый Игорь Евгеньевич! В этот "заход" я не стану ничего добавлять. У меня получился сбой в представлении и формул, и иллюстраций, и я занимался этим очень долго - то в оболочке-облаке не пошло, то мой комп слетел вместе с винтом, то время,то... И я упростил донельзя заметку, что безусловно правильно отметили все рецензенты. Я был в этомгоду очень занят (личные, семейные, работа ответственным редактором в РУДН, уход оттуда и мн. что ещё), и оказалось, что в этом своём юбилейном, юбилейном для себя, году у меня не оказалось ни одной публикации. Посему и поспешил. Но и в представленном виде эта математическая полушутка может вызвать (и вызвала) интерес. Спасибо всем! |
13.08.2021, 21:45 Цорин Борис Иосифович Отзыв: Смысл статьи: предложено уравнение для 7 класса A+B=AB, вместо элементарного его решения A=1+1/(B-1) предложены сложные конструкции, составлена целая таблица из частных случаев... В общем, это мне напоминает, как я в первом классе нашел зависимость между разностями квадратов натуральных чисел. Но тут-то целый кандидат и доцент ерундой страдает. P.S. Отдельно порадовало, что, оказывается, в задачах на вращение "не действует закон сохранения энергии". |